
Ramstake
KEM Proposal for NIST PQC Project

November 30, 2017

cryptosystem name Ramstake
principal submitter Alan Szepieniec

imec-COSIC KU Leuven
alan.szepieniec@esat.kuleuven.be

tel. +3216321953
Kasteelpark Arenberg 10 bus 2452
3001 Heverlee
Belgium

auxiliary submitters -
inventors / developers same as principal submitter; relevant

prior work is credited as appropriate
owner same as principal submitter
backup contact info alan.szepieniec@gmail.com

signature

1

Contents

1. Introduction 2

2. Specification 4
2.1. Parameters . 4
2.2. Tools . 5

2.2.1. Error-Correcting Codes . 5
2.2.2. CSPRNG . 5

2.3. Description . 6
2.3.1. Serialization of Integers . 6
2.3.2. Data Structures . 6
2.3.3. Algorithms . 7

2.4. Parameter Sets . 11

3. Performance 11
3.1. Failure Probability . 11
3.2. Complexity . 12

3.2.1. Asymptotic . 12
3.2.2. Pratice . 13
3.2.3. Memory and Pseudorandomness 13

4. Security 14
4.1. Hard Problems . 14
4.2. SNOTP-to-KEM Construction . 15
4.3. Attacks . 15

4.3.1. Slice and Dice . 15
4.3.2. Spray and Pray . 16
4.3.3. Stupid Brute Force . 17
4.3.4. Lattice Reduction . 17
4.3.5. Algebraic System Solving . 17
4.3.6. Error Triggering . 17

5. Advantages and Limitations 18

A. IP Statement 19
A.1. Statement by Submitter . 19
A.2. Statement By Implementation Owner 20

1. Introduction

The long-term security of confidential communication channels relies on their ca-
pacity to resist attacks by quantum computers. To this end, NIST envisions a tran-
sition away from public key cryptosystems that are known to fail in this scenario,
and towards the so-called post-quantum cryptosystems. One of the functionalities
in need of a post-quantum solution that is essential for securing online communi-
cation is ephemeral key exchange. This protocol enables two parties to agree on a

2

shared secret key at a cost so insignificant as to allow immediate erasure of all secret
key material after execution, as an additional security measure. In the case where
the order of the messages need not be interchangeable, this functionality is beau-
tifully captured by the key encapsulation mechanism (KEM) formalism of Cramer
and Shoup [6]. The same formalism has the added benefit of capturing the syntax
and security of the first part of IND-CCA-secure arbitrary-length hybrid encryption
schemes, enabling a separation of the public key layer from the symmetric key layer.

The desirable properties of a post-quantum KEM are obvious upon consideration.
It should be fast and it should generate short messages, not require too much memory
and be implementable on a small area or in a few lines of code. It should inspire
confidence by relying on long-standing hard problems or possibly even advertising
a proof of security. However, this design document is predicated on the greater
importance of a property not included in the previous enumeration: simplicity. The
requirement for advanced degrees in mathematics on the part of the implementers
presents a giant obstacle to mass adoption, whereas no such obstacle exists for
mathematically straightforward schemes. More importantly, complexity has the
potential to hide flaws and insecurities as they can only be exposed by experts in
the field. In contrast, a public key scheme that is accessible to a larger audience is
open to scrutiny from that same larger audience, and should therefore engender a
greater confidence than a scheme that only a few experts were not able to break.

This document presents Ramstake, a post-quantum key encapsulation mecha-
nism that excels in this category of simplicity. Aside from the well-established tools
of hash functions, pseudorandom number generators, and error-correcting codes,
Ramstake requires only high school mathematics. Though not optimized for mes-
sage size and speed, Ramstake is still competitive in these categories with messages
of less than one hundred kilobytes generated in a handful of milliseconds on a reg-
ular desktop computer at the highest security level. For security, Ramstake relies
on a relatively new and under-studied hard problem, which requires several years
of attention attention from the larger cryptographic community before it inspires
confidence. The flipside of this drawback is the advantage associated with problem
diversity: Ramstake is likely to remain immune to attacks that affect other branches
of post-quantum cryptography.

Innovation. In a nutshell, this hard problem requires finding sparse solutions to
linear equations modulo a large Mersenne prime, i.e. a prime of the form p =
2π − 1. The binary expansions of the solution (x1, x2) consist overwhelmingly of
zeros. Specifically, these integers can be described as

xi =
w∑
j=1

2ej . (1)

We refer to the integer’s Hamming weight w as the number of ones; their positions ej
are generally chosen uniformly at random from {0, . . . π − 1}. Ramstake’s analogue
of the discrete logarithm problem requires finding x1 and x2 of this form from G and
H = x1G + x2mod p. This is an affine variant of the Low Hamming Weight Ratio
problem of the Aggarwal et al. Mersenne prime cryptosystem [1], whose task is to
obtain f and g of this form (1) from H = fg−1mod p.

3

Where the Aggarwal et al cryptosystem builds on the indistinguishability of low
Hamming weight ratios, Ramstake builds on a noisy Diffie-Hellman protocol [2, 3]
instead. Alice and Bob agree on a random integer G between 0 and p. Alice
chooses sparse integers x1 and x2 and sends H = x1G + x2mod p to Bob. Bob
chooses sparse integers y1 and y2 and sends F = y1G + y2mod p to Alice. Alice
computes Sa = x1F mod p and Bob computes Sb = y1Gmod p and both integers
approximate S = x1y1Gmod p in the following sense: since p is a Mersenne prime,
reduction modulo p does not increase the integer’s Hamming weight and as a result
the differences Sa − S = x1y2mod p and Sb − S = y1x2mod p have a sparse binary
expansion. Therefore, if x1, x2, y1, y2 have a sufficiently low Hamming weight, the
binary expansions of Sa and Sb agree in most places. Alice and Bob have thus
established a shared noisy secret stream of data, or since it will be used as a one-
time pad, a shared noisy one-time pad (SNOTP, “snow-tipi”).

From SNOTP to KEM. There are various constructions in the literature for ob-
taining KEMs from SNOTPs, each different in its own subtle way. The next couple of
paragraphs give a high-level description of a generic transformation targeting IND-
CCA security, which is inspired by the “encryption-based approach” of NewHope-
Simple [4]. This construction makes abstraction of the underlying sparse integer
mathematics.

The encapsulation algorithm is a deterministic algorithm taking a fixed-length
random seed s as an explicit argument. If more randomness is needed than is con-
tained in this seed, it is generated from a cryptographically secure pseudorandom
number generator (CSPRNG). The algorithm outputs a ciphertext c and a symmet-
ric key k.

The encapsulation algorithm uses an error-correcting code such as Reed-Solomon
or BCH to encode the seed s into a larger bitstring. Then the ciphertext c consists of
three parts: 1) a contribution to the noisy Diffie-Hellman protocol; 2) the encoding
of the seed but one-time-padded with the encapsulator’s view of the SNOTP; and
3) the hash of the seed. The decapsulation algorithm computes its own view of
the SNOTP using the Diffie-Hellman contribution and undoes the one-time pad
to obtain the encoding up to some errors. Under certain conditions, the error-
correcting code is capable of retrieving the original seed s from this noisy codeword.
At this point, the decapsulation algorithm runs the encapsulation algorithm with
the exact same arguments, thus guaranteeing that the produced symmetric key k is
the same for both parties. Robust IND-CCA security comes from the fact that the
decapsulator can compare bit by bit the received ciphertext against the one that
was recreated from the transmitted seed, in addition to verifying the seed’s hash
against the one that was part of the ciphertext.

2. Specification

2.1. Parameters

The generic description of the scheme refers the following parameters without ref-
erence to their value. Concrete values are given in Section 2.4.

4

• p — the Mersenne prime modulus, satisfies p = 2π − 1;

• π — the number of bits in the binary expansion of p;

• w — the Hamming weight, which determine the number of ones in the binary
expansion of secret sparse integers;

• ν — the number of codewords to encode the transmitted seed into;

• n — the length of a single codeword (in number of bytes);

• κ — the targeted security level (in log2 of classical operations);

• λ — the length of seed values (in number of bits);

• χ — the length of the symmetric key (in number of bits).

2.2. Tools

2.2.1. Error-Correcting Codes

Ramstake relies on Reed-Solomon codes over GF(28) with designed distance δ = 224
and dimension k = 32. Codewords are n = 255 field elements long and if there are
111 or fewer errors they can be corrected. With this choice of finite field, one field
element coincides with one byte. The following subroutines are used abstractly:

• encode takes a string of 8k = 256 bits and outputs a sequence of 8n bits that
represents the Reed-Solomon encoding of the input.

• decode takes a string of 8n bits representing a noisy codeword and tries to
decode it. If the codeword is decodable, this routine returns the error symbol
⊥.

This abstract interface suffices for the description of the KEM. Moreover, any con-
crete instantiation can be exchanged for any other instantiation that adheres to the
same interface, or that modifies the interface slightly to retain compatibility.

2.2.2. CSPRNG

Both key generation and encapsulation require a seed expander. All randomness
can be generated up front; there is no need to record state and update it as pseudo-
randomness is generated. We use xof(s, `) to denote the invocation of the CSPRNG
to generate a string of ` pseudorandom bytes from the seed s.

This abstract interface suffices for the description of the KEM. In the implemen-
tations, xof is instantiated with SHAKE256. Like in the case of the Reed-Solomon
codec, any concrete instantiation can be exchanged for any other instantiation that
adheres to the same interface.

5

2.3. Description

2.3.1. Serialization of Integers

All big integers represent elements in {0, . . . , p − 1} and are therefore fully defined
by π bits. Denote by serialize(a) the array if dπ

8
e bytes satisfying

a =

dπ
8
e−1∑
i=0

serialize(a)[i]× 256i . (2)

This serialization puts the least significant byte first and pads the array with zeros to
meet the given length if the integer is not large enough. It is essentially Little-Endian
padded to length dπ

8
e, and corresponds with the GMP function mpz export(·, NULL,

-1, 1, 1, 0, a) regardless of whether the integer a is large enough.

2.3.2. Data Structures

Ramstake uses five data structures: a random seed, a secret key, a public key, a
ciphertext, and a symmetric key. Random seeds are bitstrings of length λ, whereas
symmetric keys are bitstrings of length χ. The other three data structures are more
involved.

Secret key. A secret key consists of the following items:

• seed — a random seed which fully determines the rest of the secret key in
addition to the public key;

• a, b — sparse integers, represented by π bits each.

Public key. A public key consists of the following items:

• g seed – a random seed which is used to generate the random integer G;

• C — integer between 0 and p which represents a noisy Diffie-Hellman contri-
bution. This value satisfies C = aG+ bmod p.

Ciphertext. A ciphertext consists of the following items:

• D — integer between 0 and p which represents a noisy Diffie-Hellman contri-
bution; this value satisfies D = a′G + b′mod p where a′, b′ are secret sparse
integers sampled by the encapsulator;

• seedenc — string of 8nν bits; this value is the bitwise xor of the binary
expansion of the first nν bytes of serialize(S) and the sequence of ν times
encode(s), where s is the random seed that is the argument to the encap-
sulation algorithm, and where S is the encapsulator’s view of the SNOTP:
S = a′(aG+ b)mod p.

• h — hash of the seed s; the purpose of this value is twofold: 1) to speed up
decapsulation by enabling the decoder to recognize correct decodings, and 2)
to anticipate a proof technique in which the simulator answers decapsulation
queries by finding this value’s inverse.

6

These objects are serialized by appending the serializations of their member items
in the order presented above. No length information is necessary as the size of
each object is a function of the parameters. We overload serialize to denote that
operation.

In this notation, the symmetric key k ∈ {0, 1}χ satisfies k = H(serialize(pk)‖coins),
where pk is the public key and where coins is the byte string of random coins used by
the encapsulator. Ramstake instantiates H with SHA3-256 with output truncated
to χ bits, but any other secure hash function suffices.

2.3.3. Algorithms

A KEM consists of three algorithms, KeyGen, Encaps, and Decaps. Pseudocode
for Ramstake’s three algorithms is presented in Algorithms 3, 4, and 5. All three
functionalities obtain a pseudorandom integerG from a short seed; this subprocedure
is called generate g and is shown in Algorithm 1. Algorithms KeyGen and Encaps
rely on a common subroutine called sample sparse integer which deterministically
samples a sparse integer given enough random bytes and a target Hamming weight,
and which is described in Algorithm 2.

algorithm generate g
input: seed ∈ {0, 1}λ — random seed
output: g ∈ {0, . . . , p− 1} — pseudorandom integer

1: r← xof(seed, bπ
8
c+ 2)

2: g ← 0
3: for i from 0 to bπ

8
c+ 1} do:

4: g ← 256× g + r[i]
5: end
6: return gmod p

Algorithm 1: Procedure to sample a random integer from {0, . . . , p− 1}.

7

algorithm sample sparse integer
input: r ∈ {0, . . . , 255}4×weight — enough random bytes

weight ∈ {0, . . . , π} — number of one bits
output: a ∈ {0, . . . , p− 1} — a sparse integer

1: a← 0
2: for i from 0 to weight− 1 do:
3: u← (r[4i]× 2563 + r[4i+ 1]× 2562 + r[4i+ 2]× 256 + r[4i+ 1]) mod π
4: a← a+ 2u

5: end
6: return a

Algorithm 2: Procedure to sample a sparse integer from a CSPRNG.

algorithm KeyGen
input: seed ∈ {0, 1}λ — random seed
output: sk — secret key

pk – public key

. expand randomness
1: r← xof(seed, 4× w + 4× w + λ/8)

. grab seed for G and generate G
2: seed g← r[0 : (λ/8)]
3: G← generate g(seed g)

. get sparse integers a and b
4: a← sample sparse integer(r[(λ/8) : (λ/8 + 4× w)], w)
5: b← sample sparse integer(r[(λ/8 + 4× w) : (λ/8 + 4× w + 4× w)], w)

. compute Diffie-Hellman contribution
6: C ← aG+ bmod p

7: return sk = (s, a, b), pk = (g seed, C)

Algorithm 3: Generate a secret and public key pair.

8

algorithm Encaps
input: seed ∈ {0, 1}λ — random seed

pk — public key
output: ctxt — ciphertext

k ∈ {0, 1}χ – symmetric key

. extract randomness and generate G from seed
1: r← xof(seed, 4× w + 4× w)
2: G← generate g(pk .seed g)

. sample sparse integers
3: a′ ← sample sparse integer(r[0 : (4× w)], w)
4: b′ ← sample sparse integer(r[(4× w) : (4× w + 4× w)], w)

. compute Diffie-Hellman contribution and SNOTP
5: D ← a′G+ b′mod p
6: S ← a′ pk .C mod p

. encode random seed and apply SNOTP
7: seedenc← serialize(S)[0 : (nν)]
8: for i from 0 to ν − 1 do:
9: seedenc[(in) : ((i+ 1)n)]← seedenc[(in) : ((i+ 1)n)]⊕ encode(seed)

10: end

. compute symmetric key
11: k ← H(serialize(pk)‖r)

. complete ciphertext; and return ciphertext and symmetric key
12: h← H(seed)
13: return ctxt = (D, seedenc, h), k

Algorithm 4: Encapsulate: generate a ciphertext and a symmetric key.

9

algorithm Decaps
input: ctxt = (D, seedenc, h) — ciphertext

sk = (seed, a, b) — secret key
output: k — symmetric key on success; otherwise ⊥

. recreate public key from secret key seed
1: seed g← xof(sk .seed, λ/8)
2: G← generate g(seed g)

3: C ← sk.aG+ sk.bmod p

. obtain SNOTP and decode seedenc

4: S ′ ← sk.a ctxt.Dmod p
5: str← serialize(S ′)[0 : (nν)]⊕ ctxt .seedenc
6: for i from 0 to ν − 1 do:
7: s← decode(str[(in) : ((i+ 1)n)])
8: if s 6=⊥ and H(s) = ctxt .h then:
9: break

10: end
11: end
12: if s =⊥ then:
13: return ⊥
14: end

. recreate and test ciphertext
ctxt ′, k ← Enc(s, pk = (g seed, C))

15: if ctxt 6= ctxt ′ do:
16: return ⊥
17: end

18: return k

Algorithm 5: Decapsulate: generate symmetric key and test validity of the given
ciphertext.

10

2.4. Parameter Sets

This document proposes two sets of parameters, called “Ramstake RS 216091”,
“Ramstake RS 756839”. These parameter sets target security levels 128 and 256 in
terms of log2 of required number of operations to mount a successful attack on a
classical computer. Both attacks considered in Section 4.3 are fully Groverizable,
thus enabling the quantum adversary to divide these target security levels by two.
All parameter sets use SHA3-256, SHAKE256, and Reed-Solomon error correction
over F28 with code length n = 255 and design distance δ = 224.

Table 1: Ramstake parameter sets, resulting public key and ciphertext size in kilo-
bytes, and targeted security notion and NIST security level.

π 216091 756839

w 64 128
ν 4 6
λ 256 256
χ 256 256

|pk | 26.41 kB 92.42 kB
|ctxt | 27.41 kB 93.91 kB

security IND-CCA IND-CCA
NIST level 1 5

3. Performance

3.1. Failure Probability

There is a nonzero probability of decapsulation failure even without malicious activ-
ity. This event occurs when the two views of the SNOTP are too different, requiring
the correction of too many errors. It is possible to find an exact expression for this
probability. However, the following argument opts for a more pragmatic approach.

The Reed-Solomon code used has design distance δ = 224, meaning that it can
correct up to t = b δ−1

2
c = 111 byte errors. Decapsulation fails when all ν codewords

contain more than 111 errors. By treating the number of errors e in each codeword
as independent normally distributed variables, one can obtain a reasonable estimate
of the failure probability.

The Sage script Scripts/parameters.sage, which is included in the submis-
sion package, computes the mean (µ) and standard deviation (σ) of these dis-
tributions empirically. For many different random G and appropriately sparse
a, b, a′, b′, the number of different bytes between serialize(aa′G + ba′mod p)[0 : 255]
and serialize(aa′G + b′amod p)[0 : 255] is computed. From many such trials it com-
putes µ and σ and a recommended number of codewords ν such that the failure
probability drops below 2−64. (Indeed, this script is where the values for ν in the
parameter sets of Table 2.4 come from.) The statistics are shown in Table 2.

It is possible to push the failure probability even lower by increasing ν. However,
this increase results in a larger ciphertext.

11

Table 2: Mean µ and standard deviation σ of number of errors in a codeword, along
with recommended number of codewords ν for a failure probability less
than 2−64.

216091 756839
µ 72.56 81.38
σ 7.89 7.93
ν 4 6(

1− Φ(e−µ
σ

)
)ν ≤ 2−64 ≤ 2−64

3.2. Complexity

3.2.1. Asymptotic

The loops in the pseudocode of Algorithms 1—5 run through a number of iterations
determined by the parameters ν, w, π. Of these parameters, ν is independent of the
security parameter κ. The relations between w, π and the security parameter κ are
more complex. First π must be large enough to spread out roughly 2w2 burst-errors
so as to guarantee a low enough byte-error-rate and hence non-failure. Second,
the slice-and-dice attack of Section 4.3 must be taken into account as well. These
parameters are constrained for non-failure by

2w2

π
≤ c , (3)

for some constant c roughly around 0.04. For security, the constraint is

2w ≥ κ . (4)

These equations thus require π ∼ κ2. The size of the public key and ciphertext
grows linearly with this number.

While KeyGen, Encaps and Decaps contain only a small fixed number of big field
operations, the modulus of this field is p and the field elements involved therefore
have an expansion of up to π bits. Nevertheless, there are two available optimizations
to ameliorate this cost. (However, none of the provided implementations employ
them.)

• Mersenne form. Reduction modulo p does not require costly division as it
does for generic moduli. Instead, shifting and adding does the trick. Let
a = ao × p+ ar with ar < p. Then ar + ao = amod p.

• Sparsity. In every big field operation, at least one term or factor is sparse. As
a result, the sums can be computed through w localized bitflips with carry.
The products can be computed through w shifts and as many full additions.

Consequently, the cost of integer arithmetic is linear π and in w. Therefore, the
complexity of all three algorithms is O(κ3).

12

3.2.2. Pratice

The file perform.c, which is included in the submission package, runs a number
of trials and collects timing and cycle count information. Table 3 presents the
information collected from the optimized implementations during 10 000 trials on a
Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz machine with 6144 kB of cache on each
of its four cores, with 7741 MB of RAM, and running CentOS linux.

Table 3: Implementation statistics — time and cycle count.

time (ms) cycles

Ramstake RS 216091
KeyGen 2.8 9445009
Encaps 5.4 17700978
Decaps 11.1 36706919
Total 19.3 63852906

Ramstake RS 756839
KeyGen 13.0 43148424
Encaps 24.1 79342014
Decaps 46.9 154721609
Total 84.1 277212047

It is not surprising that Decaps takes the longest, because it runs Encaps as a
subprocedure. The striking difference between Encaps and KeyGen is due to the
encoding procedure of the error correcting code. Dealing with this error-correcting
code is even more costly in Decaps where the errors are corrected.

3.2.3. Memory and Pseudorandomness

It is difficult to estimate the memory requirements of the error-correcting code alge-
bra as well of the big integer arithmetic for two reasons. 1) The current implemen-
tation outsources this operation to another library. 2) because this content is highly
dynamic: how much memory is needed depends on the value of the mathematical
object being represented. By contrast, the memory requirements of the three main
functionalities’ outputs is easily determined.

The secret key consists of one λ/8 byte seed and two integers of (after serialization)
dπ/8e bytes each, although the integers can be generated anew from the seed. The
public key contains one seed of λ/8 bytes and one integer of dπ/8e bytes. The
ciphertext consists of one integer of dπ/8e bytes, a stream of nν bytes representing
the one-time-padded repetition code, and a hash of χ/8 bytes. Table 4 summarizes
these sizes and presents concrete values for the given parameter sets.

All pseudorandomness is generated (i.e. extracted from a short seed) in the first
line of those functions that need it. So this is 8w + λ/8 for KeyGen, and 8w for
Encaps. The Decaps function does not require pseudorandomness but it must get
the λ/8-byte seed forG from the secret key seed via the same CSPRNG. Since Decaps
invokes Encaps as a subprocedure, it inherits those requirements for extracting and
storing pseudorandomness also.

13

Table 4: Size (in bytes) of output objects.

secret key public key ciphertext

formula λ/8 + 2dπ/8e λ/8 + dπ/8e dπ/8e+ nν + χ/8
Ramstake 216019 54056 27044 28064
Ramstake 756839 189242 94637 96111

4. Security

4.1. Hard Problems

Ramstake relies on the hardness of at least two problems related to finding sparse so-
lutions to affine equations modulo a pseudo-Mersenne prime p. The formal problem
statement of the first is as follows.

Low Hamming Combination (LHC) Problem.
Given: Two coefficients A,B ∈ Fp in a large Mersenne prime field Fp.
Task: Find two elements x1, x2 ∈ Fp with binary expansions of Hamming weight at
most w1 and w2 respectively, such that B = Ax1 + x2mod p.

The problem was implicitly introduced by Aggarwal et al. [1] in the form of an
assumption, which states that the distribution (A,Ax1 + x2) is indistinguishable
from (A,C) when C is drawn uniformly at random and x1, x2 uniformly at random
subject to having the required Hamming weight. The same paper also introduces
the Low Hamming Ratio Search (LHRS) Problem, which asks to find a pair of
low Hamming weight integers x1, x2 satisfying x2/x1 = H. The LHRS Problem
is equivalent to the subset of the LHC Problem where B = 0. (To see this, set
H = −A. �)

The LHC problem is only the analogue of the discrete logarithm problem in
Diffie-Hellman key agreement. The adversary does not need to compute discrete
logarithms; he merely needs to break the Diffie-Hellman problem, which comes in
search and decisional variants. The analogues of these problems for sparse integers
is formally stated below.

Low Hamming Diffie-Hellman Search (LHDHS) Problem.
Given: Three integers (G,H, F) where H = x1G+x2mod p and F = y1G+y2mod p
for some integers x1, y1 of Hamming weight w1 and x2, y2 of Hamming weight w2.
Task: Find an integer S whose Hamming distance with x1F mod p is at most t, and
whose Hamming distance with y1H mod p is also at most t.

Low Hamming Diffie-Hellman Decision (LHDHD) Problem.
Given: Four integers (G,H, F, S) where H = x1G+x2mod p and F = y1G+y2mod p
for some integers x1, y1 of Hamming weight w1 and x2, y2 of Hamming weight w2.
Task: Decide whether or not the Hamming distances between S and x1F mod p, and
between S and y1H mod p, are at most t.

Security requires these problems to be hard, meaning that all polynomial-time
quantum adversaries decide the LHDHD Problem with a success probability negli-
gibly far from that of a random guess. The assumed hardness of LHDHD implies

14

that LHDHS is hard as well, which in turn implies that LHC is hard also. It is
unclear how to solve LHDHD in a way that avoids implicitly solving LHC.

It is clear that breaking LHDHS is enough to break the scheme, as that allows the
attacker to unpad the seed encoding and recover the seed from there. It is not clear
whether security also relies on the LHDHD problem but we include that problem
for the sake of completeness, because many Diffie-Hellman type cryptosystems rely
on the proper analogue of the Decisional Diffie-Hellman problem.

4.2. SNOTP-to-KEM Construction

There is a gap between the Low Hamming Diffie-Hellman Decision Problem and the
IND-CCA (or even IND-CPA) security of Ramstake, originating from the SNOTP-
to-KEM construction. I am working on a proof of security but it is unavailable at
this point. The following obstacles make such a proof highly non-trivial.

• Failure events in the noisy Diffie-Hellman protocol affect security, especially
in the chosen ciphertext model.

• The search problems may be solved in more than one way.

• Circular encryption: the one-time pad is not independent of the message it
hides.

• The hash functions should be modeled as quantum-accessible random oracles.
However, many classical proof techniques fail in the quantum random oracle
model.

It is conceivable that a security proof can only be made to work conditioned on
some changes being made to the construction, for instance by changing the inputs
to the hash functions. Nevertheless, I do not expect the proof to recommend big
changes, thus leaving the construction’s big picture intact:

• generate noisy Diffie-Hellman protocol contributions from a short random seed;

• use the noisy Diffie-Hellman key to one-time-pad the error-correcting encoding
of the seed;

• undo the noisy one-time pad and decode the codeword;

• invoke the encapsulation algorithm with identical arguments and test if the
generated ciphertext matches the received one exactly.

4.3. Attacks

4.3.1. Slice and Dice

Beunardeau et al. present an attack exploiting the sparsity of the solutions to the
LHRS Problem [5], but it applies equally to the LHC Problem. The attack proceeds
as follows.

For each trial, partition the range R = {0, . . . , π− 1} into a number of subranges.
This number should not be too large, at most a couple hundred. Do this once for
x1 and once for x2. This yields

R
(0)
1 t · · · tR

(k−1)
1 = R

(0)
2 t · · · tR

(`−1)
2 = R . (5)

15

Set each such subrange to active or inactive at random. Ensure that the total
cardinality of all inactive subranges is at least π.

Each subrange corresponds to a variable r
(j)
i whose binary expansion matches that

of xi but restricted to that subrange. Formulaically, this means

xi =
k−1∑
j=0

2min(R
(j)
i)r

(j)
i and 0 ≤ r

(j)
i < 2#R

(j)
i . (6)

At this point, trim the sums in the left side of Eqn. 6 by dropping the terms
that correspond to inactive subranges and replace x1 and x2 by their corresponding
trimmed sums in the equation B = Ax1+x2mod p. Use LLL to find a short solution
vector.

A single trial is successful if LLL succeeds in finding the solution that corresponds
to the sparse solution. This happens if the guess at inactive subranges is correct,
namely if their respective variables are indeed zero (because then their omission does
not change the value of the sum).

For the sake of generality, assume x1 has Hamming weight w1 and x2 has Hamming
weight w2. The optimal attacker activates a proportion w1

w1+w2
of the range associated

to x1, and a proportion w2

w1+w2
of the range associated to x2. Then the probability

of all 1-bits being located inside the active subranges is given by

P =

(
w1

w1 + w2

)w2

×
(

w2

w1 + w2

)w1

. (7)

The formula is a lot simpler when w1 = w2 = w, and in this case security mandates
that

2w ≥ κ . (8)

This algorithm is fully Groverizable. Therefore, the security level halves when con-
sidering quantum adversaries with unlimited circuit depth.

4.3.2. Spray and Pray

Spray and pray is essentially a smart brute force search. Choose a random assign-
ment for x1 with Hamming weight w1, compute x2 from the given information and
test if its Hamming weight is at most w2. Assuming the solution is unique, the
success probability of a single trial is one over the size of the search space, or 1/

(
π
w

)
.

So κ bits of security requires

log2

(
π

w

)
≥ κ . (9)

For the parameter sets 216091 and 756839, the left-hand-side of Eqn. 9 is over
838 and 1783, respectively. While the algorithm is fully Groverizable, dividing these
numbers by two in order to account for quantum adversaries still results in wildly
infeasible complexity.

16

4.3.3. Stupid Brute Force

Instead of guessing one variable and computing the other from that guess, stupid
brute force guesses both at once. A single such guess succeeds with probability

1/
(
π
w

)2
, i.e., much less likely than the intelligent brute force of the spray-and-pray

strategy described above.
Another stupid brute force attack attempts to guess the input of the CSPRNG.

By design, these seeds are all 256 bits in length, making for a classical complexity
of 2256 and 2128 quantumly (again assuming unlimited depth).

4.3.4. Lattice Reduction

Aggarwal et al. already consider lattice attacks on their cryptosystem and in par-
ticular on the LHRS Problem. They observe that it is possible to generate basis
vectors for a lattice in which the sought after solution is a short vector. However,
that same lattice will contain even shorter vectors that do not correspond to a sparse
solution to the original problem. It might be possible to eliminate these parasitical
solutions by running lattice reduction with respect to the infinity norm instead of
the Euclidean norm, but it is not clear how to do this.

4.3.5. Algebraic System Solving

It is possible in theory to formulate the sparsity constraint algebraically, by con-
structing polynomials over Fp that evaluate to zero in all points that satisfy the
constraint. At this point a Gröbner basis algorithm can be used to compute a solu-
tion. However, the degree of this constraint polynomial is infeasibly large, roughly(
π
w

)
. Constructing it requires more work than exhaustively enumerating all potential

solutions and testing to see if the linear equations are satisfied.
Another option is to treat the coefficients of the binary expansion of the solutions,

as variables in and of themselves. This strategy requires adding polynomials to
require that each coefficient lie in {0, 1}, and that at most w of them are different
from zero. The result is a nonlinear system of roughly 4π + 2

(
π

w+1

)
equations in 2π

variables with some polynomials having degree
(

π
w+1

)
. For any practical parameter

set, it is infeasible to fully represent this system of equations, let alone to solve it.

4.3.6. Error Triggering

An attacker who can query the decapsulation oracle can obtain feedback on whether
the decapsulator was able to decode the transmitted codeword. With enough fail-
ures, the attacker can infer the decapsulator’s view of the SNOTP. Once the attacker
is in possession of this value, he can proceed to decapsulate any ciphertext.

However, in order to exploit this channel of information, the attacker must gen-
erate ciphertexts that fail during decapsulation. If his query ciphertext is not the
exact output of the encapsulation algorithm upon invocation with the transmitted
seed, then the manipulation will trigger a decapsulation failure regardless of whether
decoding was successful. In other words, in order to obtain meaningful information
about failure events, the attacker must restrict himself to querying only legitimate

17

outputs of Encaps. Worse still, he has no way of knowing beforehand whether or not
a ciphertext is more or less likely to cause failure before the first failure response.
Since the failure probability is less than 2−64, the attacker has to make on the order
264 honest queries to get this first failure response.

5. Advantages and Limitations

Advantage: Simplicity. Simplicity is the key selling point of Ramstake. Simple
schemes are easier to implement, easier to debug, and easier to analyze. While
simpler schemes are sometimes also easier to break, a scheme’s resilience to attacks
should not rely on its complexity.

Advantage: Problem Diversity. Ramstake relies on different hard problems com-
pared other branches of post-quantum cryptography. Consequently, breakthroughs
in cryptanalysis or hard problem solving that break or severely harm other schemes
may leave Ramstake intact.

Limitation: New Hard Problem. The hard problem on which Ramstake relies
is new and understudied. As a result, it does not offer much assurance of security
compared to schemes that have existed (and remained unbroken) for much longer.

Limitation: No Proof. Ramstake claims to offer IND-CCA security even though
there is no security reduction to the underlying hard problem. It is therefore conceiv-
able that an attack might break the scheme even without solving the hard problem.
Nevertheless, simply because something has not been proven secure yet does not
mean it is insecure.

Limitation: Bandwidth and Speed. Lattice-based KEMs are likely to be faster
and to require less bandwidth. Nevertheless, Ramstake is competitive in comparison
to the very first lattice-based and code-based cryptosystems, and it is conceivable
that sparse integer cryptosystems will undergo a similar evolution. However, po-
tential future improvements should not be considered for standardization at this
point.

Acknowledgments

The author is thankful to Fré Vercauteren, Reza Reyhanitabar and Ward Beul-
lens for useful discussions and insights. Also, the feedback from NIST after the
September deadline was highly useful and highly appreciated. The author is being
supported by a Ph.D. Fellowship from the Institute for the Promotion of Innovation
through Science and Technology in Flanders (VLAIO, formerly IWT).

18

References
[1] Aggarwal, D., Joux, A., Prakash, A., Santha, M.: A new public-key cryptosystem via mersenne

numbers. IACR Cryptology ePrint Archive 2017, 481 (2017), http://eprint.iacr.org/2017/
481

[2] Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zémor, G.: Noisy diffie-hellman proto-
cols (2010), https://pqc2010.cased.de/rr/03.pdf, PQCrypto 2010 The Third International
Workshop on Post-Quantum Cryptography (recent results session)

[3] Aguilar, C., Gaborit, P., Lacharme, P., Schrek, J., Zémor, G.: Noisy diffie-hellman protocols
or code-based key exchanged and encryption without masking (2010), https://rump2010.cr.
yp.to/fae8cd8265978675893352329786cea2.pdf, CRYPTO 2010 (rump session)

[4] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Newhope without reconciliation. IACR
Cryptology ePrint Archive 2016, 1157 (2016), http://eprint.iacr.org/2016/1157

[5] Beunardeau, M., Connolly, A., Géraud, R., Naccache, D.: On the hardness of the mersenne
low hamming ratio assumption. IACR Cryptology ePrint Archive 2017, 522 (2017), http:

//eprint.iacr.org/2017/522

[6] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. IACR Cryptology ePrint Archive 2001, 108 (2001),
http://eprint.iacr.org/2001/108

A. IP Statement

A.1. Statement by Submitter

I, Alan Szepieniec, of Kasteelpark Arenberg 10 / 3001 Heverlee / Belgium , do
hereby declare that the cryptosystem, reference implementation, or optimized im-
plementations that I have submitted, known as Ramstake, is my own original work,
or if submitted jointly with others, is the original work of the joint submitters.

I further declare that (check one):

X I do not hold and do not intend to hold any patent or patent application
with a claim which may cover the cryptosystem, reference implementation, or
optimized implementations that I have submitted, known as Ramstake; OR
(check one or both of the following):

� to the best of my knowledge, the practice of the cryptosystem, reference im-
plementation, or optimized implementations that I have submitted, known
as Ramstake, may be covered by the following U.S. and/or foreign patents:
“none”;

� I do hereby declare that, to the best of my knowledge, the following pending
U.S. and/or foreign patent applications may cover the practice of my sub-
mitted cryptosystem, reference implementation or optimized implementations:
“none”.

I do hereby acknowledge and agree that my submitted cryptosystem will be pro-
vided to the public for review and will be evaluated by NIST, and that it might not
be selected for standardization by NIST. I further acknowledge that I will not receive

19

http://eprint.iacr.org/2017/481
http://eprint.iacr.org/2017/481
https://pqc2010.cased.de/rr/03.pdf
https://rump2010.cr.yp.to/fae8cd8265978675893352329786cea2.pdf
https://rump2010.cr.yp.to/fae8cd8265978675893352329786cea2.pdf
http://eprint.iacr.org/2016/1157
http://eprint.iacr.org/2017/522
http://eprint.iacr.org/2017/522
http://eprint.iacr.org/2001/108

financial or other compensation from the U.S. Government for my submission. I cer-
tify that, to the best of my knowledge, I have fully disclosed all patents and patent
applications which may cover my cryptosystem, reference implementation or opti-
mized implementations. I also acknowledge and agree that the U.S. Government
may, during the public review and the evaluation process, and, if my submitted
cryptosystem is selected for standardization, during the lifetime of the standard,
modify my submitted cryptosystem’s specifications (e.g., to protect against a newly
discovered vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed
to publish the draft standards for public comment.

I do hereby agree to provide the statements required by Sections 2.D.2 and 2.D.3
in the Call For Proposals for any patent or patent application identified to cover
the practice of my cryptosystem, reference implementation or optimized implemen-
tations and the right to use such implementations for the purposes of the public
review and evaluation process.

I acknowledge that, during the post-quantum algorithm evaluation process, NIST
may remove my cryptosystem from consideration for standardization. If my cryp-
tosystem (or the derived cryptosystem) is removed from consideration for stan-
dardization or withdrawn from consideration by all submitter(s) and owner(s), I
understand that rights granted and assurances made under Sections 2.D.1, 2.D.2
and 2.D.3 of the Call For Proposals, including use rights of the reference and op-
timized implementations, may be withdrawn by the submitter(s) and owner(s), as
appropriate.

Signed: Alan Szepieniec
Title: ir.
Date:
Place:

A.2. Statement By Implementation Owner

I, Alan Szepieniec, Kasteelpark Arenberg 10 / 3001 Heverlee / Belgium, am the
owner or authorized representative of the owner (print full name, if different than
the signer) of the submitted reference implementation and optimized implementa-
tions and hereby grant the U.S. Government and any interested party the right to
reproduce, prepare derivative works based upon, distribute copies of, and display
such implementations for the purposes of the post-quantum algorithm public review
and evaluation process, and implementation if the corresponding cryptosystem is
selected for standardization and as a standard, notwithstanding that the implemen-
tations may be copyrighted or copyrightable.

Signed: Alan Szepieniec
Title: ir.
Date:
Place:

20

	Introduction
	Specification
	Parameters
	Tools
	Error-Correcting Codes
	CSPRNG

	Description
	Serialization of Integers
	Data Structures
	Algorithms

	Parameter Sets

	Performance
	Failure Probability
	Complexity
	Asymptotic
	Pratice
	Memory and Pseudorandomness

	Security
	Hard Problems
	SNOTP-to-KEM Construction
	Attacks
	Slice and Dice
	Spray and Pray
	Stupid Brute Force
	Lattice Reduction
	Algebraic System Solving
	Error Triggering

	Advantages and Limitations
	IP Statement
	Statement by Submitter
	Statement By Implementation Owner

