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Univariate Batching
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Batch Before DEEP
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Batch Constraints
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Quotient Segmentation (Diagram)
AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×



12/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics



12/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics



13/43

Grinding

No Grinding

Prover Verifier
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Zero Knowledge
zero-knowledge ⇔ transcript is independent of witness
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3. trace randomizer values
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Salted Merkle Leafs

parent = H(leftchild∥rightchild)
leafs

root

salts

Motivation: make internal Merkle nodes independent of un-opened data

→ in ROM: data = H(leaf) already independent

→ in standard model: concat-then-hash not enough ×
−→ use perfectly-hiding + computationally-binding commitment scheme instead ✓
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Batch Randomizer Polynomial

include uniformly random polynomial into batch

→ How: add unconstrained and random trace column

→ Why: make low-degree tested codeword independent of trace
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Trace Randomizer Values: Interleaving
interleave trace with random rows
→ Why: make observed rows independent of trace

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order 2N/ρ

code rate ρ = #⃝+#□
#× (!!!)

w ·#□ ⩾ t · w +( 2 · w + (t+ 1) · k ) · e
FRI DEEP quotient

segments
extension
degree



18/43

Trace Randomizer Values: Interleaving
interleave trace with random rows
→ Why: make observed rows independent of trace

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order 2N/ρ

code rate ρ = #⃝+#□
#× (!!!)

w ·#□ ⩾ t · w +( 2 · w + (t+ 1) · k ) · e
FRI DEEP quotient

segments
extension
degree



18/43

Trace Randomizer Values: Interleaving
interleave trace with random rows
→ Why: make observed rows independent of trace

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order 2N/ρ

code rate ρ = #⃝+#□
#× (!!!)

w ·#□ ⩾ t · w +( 2 · w + (t+ 1) · k ) · e
FRI DEEP quotient

segments
extension
degree



19/43

Trace Randomizer Values: Stingy

pad then concatenate random rows

→ Why: make observed rows independent of trace

w ·#□ ⩾ t · w +( 2 · w + (t+ 1) · k ) · e
FRI DEEP quotient

segments
extension
degree

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order N/ρ

code rate ρ = #⃝+#□
#×

complications:

− multiply quotients by deg #□− 1 Z(X)

− quotient degree increases

→ more segments, or

→ worse rate ⇒ more indices
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Two-Stage DEEP-ALI (Diagram)
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Preprocessing

pre-commit to separate “trace” table

− look-up tables ✓

− circuits ✓

− extra Merkle tree x

− need to know trace length beforehand x

P
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D
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clk clock / cycle counter
ip instruction pointer
ci current instruction
arg0 instruction argument 0
arg1 instruction argument 1
arg2 instruction argument 2
ramp RAM pointer
ramv RAM value
reg0 register 0
reg1 register 1
reg2 register 2
reg3 register 3

tim
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Processor AIR Constraints (Example)

jmp a jump to instruction rega

dest =
3∑

i=0

regi
∏
j ̸=i

arg0−j
i−j value of rega

jump = dest− ip⋆ update value of ip (jump case)

nojump = ip+ 1− ip⋆ update value of ip (no jump)

selector =
∏

instr∈I\{jmp}

instr−ci
instr−jmp

1 iff ci = jmp

selector · jump+ (1− selector) · nojump
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Communication Lines Again

Processor

Input

Output

✓

✓

Program

✓

Memory

?

Program
Hash
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Memory — Problem Statement

Processor

Memory

Memory cells must have the same value

as the previous time they were touched.

✓ random access

✓ read-write
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STIR

− asymptotically and concretely better than FRI

− simpler proof of soundness

− paves way for aggregation
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ECFFT

ℜ

ℑ

α x

y

CircleSTARK

Structured Fields Arbitrary Fields
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