
Advanced zk-STARKs

Alan Szepieniec
艾伦·佘丕涅茨
alan@neptune.cash

https://neptune.cash/ https://triton-vm.org/

https://asz.ink/presentations/2025-09-18-Advanced-zkSTARKs.pdf

1/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

1/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

2/43

STARK Compilation Pipeline

FRI STIR WHIR

low degree tests

ALI

DEEP-ALI

Low-Degree IOP

Polynomial IOP

IOP

IP

SNARKSTARK2

+

DEEP

BCS

FS

DEEP

+ LDT

BCS

FS

AET + AIR Witness + Constraints

computation

arithmetization

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle tree

interact with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifier

sample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rows

apply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifier

sample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle tree

interact with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifier

split-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

3/43

STARK Diagram

algebraic execution trace

AET

low-degree extension

low-degree extended trace

t

L
D
E

composition with AIR constraints

division by zerofiers

quotients

qC ◦ t/Z

build Merkle treeinteract with verifiersample out-of-domain point

z

produce out-of-domain rowsapply DEEP update

t⋆ t∗ q∗

interact with verifiersample weights

r

random linear combination

c
∑

build Merkle treeinteract with verifiersplit-and-fold

s c

rinse and repeat

logN×

obtain FRI indices

open indicated rows

4/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

4/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

4/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

5/43

Batching
− linear

n−1∑
i=0

rici ϵ = ϵGAP(δ0)

− univariate
n−1∑
i=0

rici ϵ = n · ϵGAP(δ0)

− multilinear
n−1∑
i=0

r⌞i⌟ci ϵ = log n · ϵGAP(δ0)

=
∑(

logn−1∏
j=0

r
bj
j (1− rj)

(1−bj)

)
ci

so
un

dn
es
s
er
ro
r

required randomness

5/43

Batching
− linear

n−1∑
i=0

rici ϵ = ϵGAP(δ0)

− univariate
n−1∑
i=0

rici ϵ = n · ϵGAP(δ0)

− multilinear
n−1∑
i=0

r⌞i⌟ci ϵ = log n · ϵGAP(δ0)

=
∑(

logn−1∏
j=0

r
bj
j (1− rj)

(1−bj)

)
ci

so
un

dn
es
s
er
ro
r

required randomness

5/43

Batching
− linear

n−1∑
i=0

rici ϵ = ϵGAP(δ0)

− univariate
n−1∑
i=0

rici ϵ = n · ϵGAP(δ0)

− multilinear
n−1∑
i=0

r⌞i⌟ci ϵ = log n · ϵGAP(δ0)

=
∑(

logn−1∏
j=0

r
bj
j (1− rj)

(1−bj)

)
ci

so
un

dn
es
s
er
ro
r

required randomness

5/43

Batching
− linear

n−1∑
i=0

rici ϵ = ϵGAP(δ0)

− univariate
n−1∑
i=0

rici ϵ = n · ϵGAP(δ0)

− multilinear
n−1∑
i=0

r⌞i⌟ci ϵ = log n · ϵGAP(δ0)

=
∑(

logn−1∏
j=0

r
bj
j (1− rj)

(1−bj)

)
ci

so
un

dn
es
s
er
ro
r

required randomness

6/43

Univariate Batching
AET

t

L
D
E

qC ◦ t/Z

z

t⋆ t∗ q∗ r c
∑

s c

logN×

AET

t

L
D
E

qC ◦ t/Z

z

t⋆ t∗ q∗ r c
∑

s c

logN×

7/43

Batch Before DEEP
AET

t

L
D
E

qC ◦ t/Z

z

t⋆ t∗ q∗ r c
∑

s c

logN×

AET

t

L
D
E

qC ◦ t/Z

z

r
∑
∑

c
∑

s c

logN×

8/43

Batch Constraints
AET

t

L
D
E

qC ◦ t/Z

z

r
∑
∑

c
∑

s c

logN×

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

9/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

9/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

10/43

Quotient Segmentation

What if deg(C) > 2?

t Q split

z

zk

10/43

Quotient Segmentation

What if deg(C) > 2?

t Q

split

z

zk

10/43

Quotient Segmentation

What if deg(C) > 2?

t Q

split

z

zk

10/43

Quotient Segmentation

What if deg(C) > 2?

t Q split

z

zk

10/43

Quotient Segmentation

What if deg(C) > 2?

t Q split

z

zk

10/43

Quotient Segmentation

What if deg(C) > 2?

t Q split

z

zk

11/43

Quotient Segmentation (Diagram)
AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

12/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

12/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

13/43

Grinding

No Grinding

Prover Verifier

cmt

ch

rsp

V(cmt , ch, rsp)

With Grinding

Prover Verifier

cmt

ch

rsp, nonce

H(cmt∥nonce)
?
< ζ

V(cmt , ch, rsp)

Soundness
Error

ϵ ϵ · ζ

Prover
Work W W+ζ−1≈ 230

+ 10 bits

+ 0.1%

13/43

Grinding

No Grinding

Prover Verifier

cmt

ch

rsp

V(cmt , ch, rsp)

With Grinding

Prover Verifier

cmt

ch

rsp, nonce

H(cmt∥nonce)
?
< ζ

V(cmt , ch, rsp)

Soundness
Error

ϵ ϵ · ζ

Prover
Work W W+ζ−1≈ 230

+ 10 bits

+ 0.1%

13/43

Grinding

No Grinding

Prover Verifier

cmt

ch

rsp

V(cmt , ch, rsp)

With Grinding

Prover Verifier

cmt

ch

rsp, nonce

H(cmt∥nonce)
?
< ζ

V(cmt , ch, rsp)

Soundness
Error

ϵ ϵ · ζ

Prover
Work W W+ζ−1≈ 230

+ 10 bits

+ 0.1%

13/43

Grinding

No Grinding

Prover Verifier

cmt

ch

rsp

V(cmt , ch, rsp)

With Grinding

Prover Verifier

cmt

ch

rsp, nonce

H(cmt∥nonce)
?
< ζ

V(cmt , ch, rsp)

Soundness
Error

ϵ ϵ · ζ

Prover
Work W W+ζ−1

≈ 230

+ 10 bits

+ 0.1%

13/43

Grinding

No Grinding

Prover Verifier

cmt

ch

rsp

V(cmt , ch, rsp)

With Grinding

Prover Verifier

cmt

ch

rsp, nonce

H(cmt∥nonce)
?
< ζ

V(cmt , ch, rsp)

Soundness
Error

ϵ ϵ · ζ

Prover
Work W W+ζ−1≈ 230

+ 10 bits

+ 0.1%

14/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

14/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

14/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

14/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

15/43

Zero Knowledge
zero-knowledge ⇔ transcript is independent of witness

→ mask with randomness

1. salted Merkle leafs (optional)

2. batch randomizer polynomial

3. trace randomizer values

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

15/43

Zero Knowledge
zero-knowledge ⇔ transcript is independent of witness

→ mask with randomness

1. salted Merkle leafs (optional)

2. batch randomizer polynomial

3. trace randomizer values

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

15/43

Zero Knowledge
zero-knowledge ⇔ transcript is independent of witness

→ mask with randomness

1. salted Merkle leafs (optional)

2. batch randomizer polynomial

3. trace randomizer values

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

15/43

Zero Knowledge
zero-knowledge ⇔ transcript is independent of witness

→ mask with randomness

1. salted Merkle leafs (optional)

2. batch randomizer polynomial

3. trace randomizer values

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

15/43

Zero Knowledge
zero-knowledge ⇔ transcript is independent of witness

→ mask with randomness

1. salted Merkle leafs (optional)

2. batch randomizer polynomial

3. trace randomizer values

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

15/43

Zero Knowledge
zero-knowledge ⇔ transcript is independent of witness

→ mask with randomness

1. salted Merkle leafs (optional)

2. batch randomizer polynomial

3. trace randomizer values

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

16/43

Salted Merkle Leafs

parent = H(leftchild∥rightchild)
leafs

root

salts

Motivation: make internal Merkle nodes independent of un-opened data

→ in ROM: data = H(leaf) already independent

→ in standard model: concat-then-hash not enough ×
−→ use perfectly-hiding + computationally-binding commitment scheme instead ✓

16/43

Salted Merkle Leafs

parent = H(leftchild∥rightchild)
leafs

root

salts

Motivation: make internal Merkle nodes independent of un-opened data

→ in ROM: data = H(leaf) already independent

→ in standard model: concat-then-hash not enough ×
−→ use perfectly-hiding + computationally-binding commitment scheme instead ✓

16/43

Salted Merkle Leafs

parent = H(leftchild∥rightchild)
leafs

root

salts

Motivation: make internal Merkle nodes independent of un-opened data

→ in ROM: data = H(leaf) already independent

→ in standard model: concat-then-hash not enough ×
−→ use perfectly-hiding + computationally-binding commitment scheme instead ✓

17/43

Batch Randomizer Polynomial

include uniformly random polynomial into batch

→ How: add unconstrained and random trace column

→ Why: make low-degree tested codeword independent of trace

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

17/43

Batch Randomizer Polynomial

include uniformly random polynomial into batch
→ How: add unconstrained and random trace column

→ Why: make low-degree tested codeword independent of trace

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

17/43

Batch Randomizer Polynomial

include uniformly random polynomial into batch
→ How: add unconstrained and random trace column

→ Why: make low-degree tested codeword independent of trace

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

17/43

Batch Randomizer Polynomial

include uniformly random polynomial into batch
→ How: add unconstrained and random trace column

→ Why: make low-degree tested codeword independent of trace

AET

t

L
D
E

u Q

z

r
∑
∑

c
∑

s c

logN×

18/43

Trace Randomizer Values: Interleaving
interleave trace with random rows
→ Why: make observed rows independent of trace

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order 2N/ρ

code rate ρ = #⃝+#□
#× (!!!)

w ·#□ ⩾ t · w +(2 · w + (t+ 1) · k) · e
FRI DEEP quotient

segments
extension
degree

18/43

Trace Randomizer Values: Interleaving
interleave trace with random rows
→ Why: make observed rows independent of trace

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order 2N/ρ

code rate ρ = #⃝+#□
#× (!!!)

w ·#□ ⩾ t · w +(2 · w + (t+ 1) · k) · e
FRI DEEP quotient

segments
extension
degree

18/43

Trace Randomizer Values: Interleaving
interleave trace with random rows
→ Why: make observed rows independent of trace

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order 2N/ρ

code rate ρ = #⃝+#□
#× (!!!)

w ·#□ ⩾ t · w +(2 · w + (t+ 1) · k) · e
FRI DEEP quotient

segments
extension
degree

19/43

Trace Randomizer Values: Stingy

pad then concatenate random rows

→ Why: make observed rows independent of trace

w ·#□ ⩾ t · w +(2 · w + (t+ 1) · k) · e
FRI DEEP quotient

segments
extension
degree

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order N/ρ

code rate ρ = #⃝+#□
#×

complications:

− multiply quotients by deg #□− 1 Z(X)

− quotient degree increases

→ more segments, or

→ worse rate ⇒ more indices

19/43

Trace Randomizer Values: Stingy

pad then concatenate random rows

→ Why: make observed rows independent of trace

w ·#□ ⩾ t · w +(2 · w + (t+ 1) · k) · e
FRI DEEP quotient

segments
extension
degree

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order N/ρ

code rate ρ = #⃝+#□
#×

complications:

− multiply quotients by deg #□− 1 Z(X)

− quotient degree increases

→ more segments, or

→ worse rate ⇒ more indices

19/43

Trace Randomizer Values: Stingy

pad then concatenate random rows

→ Why: make observed rows independent of trace

w ·#□ ⩾ t · w +(2 · w + (t+ 1) · k) · e
FRI DEEP quotient

segments
extension
degree

ℜ

ℑ

αtrace values

randomizer values

evaluation domain

= coset of subgroup of order N/ρ

code rate ρ = #⃝+#□
#×

complications:

− multiply quotients by deg #□− 1 Z(X)

− quotient degree increases

→ more segments, or

→ worse rate ⇒ more indices

20/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

20/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

21/43

Two-Stage DEEP-ALI

0-stage:

1-stage:

2-stage:

LDE Trace
+ Quotients DEEP FRI

LDE Trace
Quotient
Weights

Compressed
Quotients DEEP FRI

Main
Trace

AIR
randomizers

Aux
Trace

Quotient
Weights

Compressed
Quotients

randomized AIR ≫ deterministic AIR

21/43

Two-Stage DEEP-ALI

0-stage:

1-stage:

2-stage:

LDE Trace
+ Quotients DEEP FRI

LDE Trace
Quotient
Weights

Compressed
Quotients DEEP FRI

Main
Trace

AIR
randomizers

Aux
Trace

Quotient
Weights

Compressed
Quotients

randomized AIR ≫ deterministic AIR

21/43

Two-Stage DEEP-ALI

0-stage:

1-stage:

2-stage:

LDE Trace
+ Quotients DEEP FRI

LDE Trace
Quotient
Weights

Compressed
Quotients DEEP FRI

Main
Trace

AIR
randomizers

Aux
Trace

Quotient
Weights

Compressed
Quotients

randomized AIR ≫ deterministic AIR

21/43

Two-Stage DEEP-ALI

0-stage:

1-stage:

2-stage:

LDE Trace
+ Quotients DEEP FRI

LDE Trace
Quotient
Weights

Compressed
Quotients DEEP FRI

Main
Trace

AIR
randomizers

Aux
Trace

Quotient
Weights

Compressed
Quotients

randomized AIR ≫ deterministic AIR

21/43

Two-Stage DEEP-ALI

0-stage:

1-stage:

2-stage:

LDE Trace
+ Quotients DEEP FRI

LDE Trace
Quotient
Weights

Compressed
Quotients DEEP FRI

Main
Trace

AIR
randomizers

Aux
Trace

Quotient
Weights

Compressed
Quotients

randomized AIR ≫ deterministic AIR

22/43

Two-Stage DEEP-ALI (Diagram)

AET

t

L
D
E

u Q

z

r ∑
∑

c∑ s c

logN×

AET

M

L
D
E

v

v

A

L
D
E

u Q

z

r ∑
∑

c∑ s c

logN×

23/43

Preprocessing

pre-commit to separate “trace” table

− look-up tables ✓

− circuits ✓

− extra Merkle tree x

− need to know trace length beforehand x

P

AET

M

L
D
E

v

v

A

L
D
E

u Q

z

r ∑
∑

c∑ s c

logN×

24/43

Table Of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

24/43

Table Of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

24/43

Table Of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

24/43

Table Of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

25/43

Processor (Example)
clk clock / cycle counter
ip instruction pointer
ci current instruction
arg0 instruction argument 0
arg1 instruction argument 1
arg2 instruction argument 2
ramp RAM pointer
ramv RAM value
reg0 register 0
reg1 register 1
reg2 register 2
reg3 register 3

tim
e

25/43

Processor (Example)
clk clock / cycle counter
ip instruction pointer
ci current instruction
arg0 instruction argument 0
arg1 instruction argument 1
arg2 instruction argument 2
ramp RAM pointer
ramv RAM value
reg0 register 0
reg1 register 1
reg2 register 2
reg3 register 3

tim
e

26/43

Processor AIR Constraints (Example)

jmp a jump to instruction rega

dest =
3∑

i=0

regi
∏
j ̸=i

arg0−j
i−j value of rega

jump = dest− ip⋆ update value of ip (jump case)

nojump = ip+ 1− ip⋆ update value of ip (no jump)

selector =
∏

instr∈I\{jmp}

instr−ci
instr−jmp

1 iff ci = jmp

selector · jump+ (1− selector) · nojump

27/43

Communication Lines

Processor

Input

Output

Program

Memory

Program
Hash

27/43

Communication Lines

Processor

Input

Output

Program

Memory

Program
Hash

27/43

Communication Lines

Processor

Input

Output

Program

Memory

Program
Hash

27/43

Communication Lines

Processor

Input

Output

Program

Memory

Program
Hash

27/43

Communication Lines

Processor

Input

Output

Program

Memory

Program
Hash

28/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

28/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

29/43

Permutation Argument
b = σ(a) for some permutation σ

a b

x− a x− b
∏ ∏

running
pro

duct

running
pro

duct

?
=

Soundness

Pr
x
[pa(x) = pb(x) | pa(X) ̸= pb(X)] ⩽ N

F

29/43

Permutation Argument
b = σ(a) for some permutation σ

a bx− a x− b

∏ ∏

running
pro

duct

running
pro

duct

?
=

Soundness

Pr
x
[pa(x) = pb(x) | pa(X) ̸= pb(X)] ⩽ N

F

29/43

Permutation Argument
b = σ(a) for some permutation σ

a bx− a x− b
∏ ∏

running
pro

duct

running
pro

duct

?
=

Soundness

Pr
x
[pa(x) = pb(x) | pa(X) ̸= pb(X)] ⩽ N

F

29/43

Permutation Argument
b = σ(a) for some permutation σ

a bx− a x− b
∏ ∏

running
pro

duct

running
pro

duct

?
=

Soundness

Pr
x
[pa(x) = pb(x) | pa(X) ̸= pb(X)] ⩽ N

F

29/43

Permutation Argument
b = σ(a) for some permutation σ

a bx− a x− b
∏ ∏

running
pro

duct

running
pro

duct

?
=

Soundness

Pr
x
[pa(x) = pb(x) | pa(X) ̸= pb(X)] ⩽ N

F

30/43

Evaluation Argument
a[ma] = b[mb] for ma,mb ⊆ {0, . . . , N − 1}

a bma mb

a × ma b × mbf(·) f(·)

running
evaluation

running
evaluation

?
=

Soundness

Pr
x
[fa(x) = fb(x) | fa(X) ̸= fb(X)] ⩽ N

F

30/43

Evaluation Argument
a[ma] = b[mb] for ma,mb ⊆ {0, . . . , N − 1}

a bma mba × ma b × mb

f(·) f(·)

running
evaluation

running
evaluation

?
=

Soundness

Pr
x
[fa(x) = fb(x) | fa(X) ̸= fb(X)] ⩽ N

F

30/43

Evaluation Argument
a[ma] = b[mb] for ma,mb ⊆ {0, . . . , N − 1}

a bma mba × ma b × mbf(·) f(·)

running
evaluation

running
evaluation

?
=

Soundness

Pr
x
[fa(x) = fb(x) | fa(X) ̸= fb(X)] ⩽ N

F

30/43

Evaluation Argument
a[ma] = b[mb] for ma,mb ⊆ {0, . . . , N − 1}

a bma mba × ma b × mbf(·) f(·)

running
evaluation

running
evaluation

?
=

Soundness

Pr
x
[fa(x) = fb(x) | fa(X) ̸= fb(X)] ⩽ N

F

30/43

Evaluation Argument
a[ma] = b[mb] for ma,mb ⊆ {0, . . . , N − 1}

a bma mba × ma b × mbf(·) f(·)

running
evaluation

running
evaluation

?
=

Soundness

Pr
x
[fa(x) = fb(x) | fa(X) ̸= fb(X)] ⩽ N

F

31/43

Lookup Argument
a ≡ b as sets

a bma mb

log d
dX

[f(X)] = f ′(X)
f(X)

log d
dX

[
∏

i(X − ai)
mi]

=
∑

i
mi

X−ai

ma
x−a

mb
x−b

∑ ∑

running
sum

running
sum

?
=

Soundness

Pr
x
[Sa = Sb | a ̸≡ b]

= Pr
x
[Sa ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i = Sb ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i | a ̸≡ b]

⩽ 2N
F

31/43

Lookup Argument
a ≡ b as sets

a bma mb

log d
dX

[f(X)] = f ′(X)
f(X)

log d
dX

[
∏

i(X − ai)
mi]

=
∑

i
mi

X−ai

ma
x−a

mb
x−b

∑ ∑

running
sum

running
sum

?
=

Soundness

Pr
x
[Sa = Sb | a ̸≡ b]

= Pr
x
[Sa ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i = Sb ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i | a ̸≡ b]

⩽ 2N
F

31/43

Lookup Argument
a ≡ b as sets

a bma mb

log d
dX

[f(X)] = f ′(X)
f(X)

log d
dX

[
∏

i(X − ai)
mi]

=
∑

i
mi

X−ai

ma
x−a

mb
x−b

∑ ∑

running
sum

running
sum

?
=

Soundness

Pr
x
[Sa = Sb | a ̸≡ b]

= Pr
x
[Sa ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i = Sb ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i | a ̸≡ b]

⩽ 2N
F

31/43

Lookup Argument
a ≡ b as sets

a bma mb

log d
dX

[f(X)] = f ′(X)
f(X)

log d
dX

[
∏

i(X − ai)
mi]

=
∑

i
mi

X−ai

ma
x−a

mb
x−b

∑ ∑

running
sum

running
sum

?
=

Soundness

Pr
x
[Sa = Sb | a ̸≡ b]

= Pr
x
[Sa ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i = Sb ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i | a ̸≡ b]

⩽ 2N
F

31/43

Lookup Argument
a ≡ b as sets

a bma mb

log d
dX

[f(X)] = f ′(X)
f(X)

log d
dX

[
∏

i(X − ai)
mi]

=
∑

i
mi

X−ai

ma
x−a

mb
x−b

∑ ∑

running
sum

running
sum

?
=

Soundness

Pr
x
[Sa = Sb | a ̸≡ b]

= Pr
x
[Sa ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i = Sb ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i | a ̸≡ b]

⩽ 2N
F

31/43

Lookup Argument
a ≡ b as sets

a bma mb

log d
dX

[f(X)] = f ′(X)
f(X)

log d
dX

[
∏

i(X − ai)
mi]

=
∑

i
mi

X−ai

ma
x−a

mb
x−b

∑ ∑

running
sum

running
sum

?
=

Soundness

Pr
x
[Sa = Sb | a ̸≡ b]

= Pr
x
[Sa ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i = Sb ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i | a ̸≡ b]

⩽ 2N
F

31/43

Lookup Argument
a ≡ b as sets

a bma mb

log d
dX

[f(X)] = f ′(X)
f(X)

log d
dX

[
∏

i(X − ai)
mi]

=
∑

i
mi

X−ai

ma
x−a

mb
x−b

∑ ∑

running
sum

running
sum

?
=

Soundness

Pr
x
[Sa = Sb | a ̸≡ b]

= Pr
x
[Sa ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i = Sb ·

∏
i(x− ai)

ma,i ·
∏

i(x− bi)
mb,i | a ̸≡ b]

⩽ 2N
F

32/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

32/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

33/43

Communication Lines Again

Processor

Input

Output

✓

✓

Program

✓

Memory

?

Program
Hash

34/43

Memory — Problem Statement

Processor

Memory

Memory cells must have the same value

as the previous time they were touched.

✓ random access

✓ read-write

35/43

Memory — Construction
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp

memory
integrity

⇐
regions of constant ramp are contiguous

35/43

Memory — Construction
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp

memory
integrity

⇐
regions of constant ramp are contiguous

35/43

Memory — Construction
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp

memory
integrity

⇐
regions of constant ramp are contiguous

35/43

Memory — Construction
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp

memory
integrity

⇐

regions of constant ramp are contiguous

35/43

Memory — Construction
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp

memory
integrity

⇐
regions of constant ramp are contiguous

36/43

Memory — Permutation
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

∑ ∑
x−

∑
x−

∑∏ ∏

?
=

36/43

Memory — Permutation
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

∑ ∑

x−
∑

x−
∑∏ ∏

?
=

36/43

Memory — Permutation
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

∑ ∑
x−

∑
x−

∑

∏ ∏

?
=

36/43

Memory — Permutation
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

∑ ∑
x−

∑
x−

∑∏ ∏

?
=

36/43

Memory — Permutation
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

∑ ∑
x−

∑
x−

∑∏ ∏

?
=

37/43

Memory — Lookup
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

m
∆ clk

m
x−clk 1

∆clk

∑ ∑

?
=

37/43

Memory — Lookup
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

m
∆ clk

m
x−clk 1

∆clk

∑ ∑

?
=

37/43

Memory — Lookup
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

m
∆ clk

m
x−clk 1

∆clk

∑ ∑

?
=

37/43

Memory — Lookup
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

m
∆ clk

m
x−clk 1

∆clk

∑ ∑

?
=

37/43

Memory — Lookup
Processor RAM

clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

m
∆ clk

m
x−clk 1

∆clk

∑ ∑

?
=

38/43

Memory — Contiguity

Processor RAM
clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

ca cb a(·) b(·)
∏

d
dX

∏
accumulates one factor X − ramp

whenever ramp ̸= ramp⋆

a(x) · f(x) + b(x) · f ′(x)
?
= 1

not contiguous

⇒ repeated factors

⇒ gcd ̸= 1

38/43

Memory — Contiguity

Processor RAM
clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

ca cb

a(·) b(·)
∏

d
dX

∏
accumulates one factor X − ramp

whenever ramp ̸= ramp⋆

a(x) · f(x) + b(x) · f ′(x)
?
= 1

not contiguous

⇒ repeated factors

⇒ gcd ̸= 1

38/43

Memory — Contiguity

Processor RAM
clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

ca cb a(·) b(·)
∏

d
dX

∏
accumulates one factor X − ramp

whenever ramp ̸= ramp⋆

a(x) · f(x) + b(x) · f ′(x)
?
= 1

not contiguous

⇒ repeated factors

⇒ gcd ̸= 1

38/43

Memory — Contiguity

Processor RAM
clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

ca cb a(·) b(·)
∏

d
dX

∏
accumulates one factor X − ramp

whenever ramp ̸= ramp⋆

a(x) · f(x) + b(x) · f ′(x)
?
= 1

not contiguous

⇒ repeated factors

⇒ gcd ̸= 1

38/43

Memory — Contiguity

Processor RAM
clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

ca cb a(·) b(·)
∏

d
dX

∏
accumulates one factor X − ramp

whenever ramp ̸= ramp⋆

a(x) · f(x) + b(x) · f ′(x)
?
= 1

not contiguous

⇒ repeated factors

⇒ gcd ̸= 1

38/43

Memory — Contiguity

Processor RAM
clk ramp ramv clk ramp ramv

sorted
by

c
l
k

soted
fi
rst

by
r
a
m
p
then

by
c
l
k

1. same data, different order

2. within regions of constant ramp, correctly sorted by clk

3. correctly sorted by ramp regions of constant ramp are contiguous

ca cb a(·) b(·)
∏

d
dX

∏
accumulates one factor X − ramp

whenever ramp ̸= ramp⋆

a(x) · f(x) + b(x) · f ′(x)
?
= 1

not contiguous

⇒ repeated factors

⇒ gcd ̸= 1

39/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

39/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

39/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

40/43

Univariate versus Multilinear
Univariate Multilinear

DEEP-ALI GKR

WHIR / GKR-logup

40/43

Univariate versus Multilinear
Univariate Multilinear

DEEP-ALI GKR

WHIR / GKR-logup

40/43

Univariate versus Multilinear
Univariate Multilinear

DEEP-ALI GKR

WHIR / GKR-logup

41/43

STIR

− asymptotically and concretely better than FRI

− simpler proof of soundness

− paves way for aggregation

42/43

ECFFT

ℜ

ℑ

α x

y

CircleSTARK

Structured Fields Arbitrary Fields

43/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

43/43

Table of Contents
Retrospective

Optimizations
Batching
Quotient Segmentation
Grinding

Enhancements
Zero-Knowledge
Randomized AIR with Preprocessing

VM Architecture
Overview
Communication Arguments
Memory

Other Topics

Advanced zk-STARKs

Alan Szepieniec
艾伦·佘丕涅茨
alan@neptune.cash

https://neptune.cash/ https://triton-vm.org/

https://asz.ink/presentations/2025-09-18-Advanced-zkSTARKs.pdf

	Retrospective
	Optimizations
	Batching
	Quotient Segmentation
	Grinding

	Enhancements
	Zero-Knowledge
	Randomized AIR with Preprocessing

	VM Architecture
	Overview
	Communication Arguments
	Memory

	Other Topics

